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Question Bank 

Paper : MTH – 212 (B) 

Computational Algebra 
Unit – I 

1 : Questions of 2 marks 
1) Define reflexive relation and irreflexive relation. 

2) Define symmetric and antisymmetric relation. 

3) Define transitive closure and symmetric closure of a relation R on 

a set A.  

4) Define closure and symmetric closure of a relation R on a set A. 

5) Define reflexive closure of a relation R on a set A. Explain by an 

example. 

6) Define rechability relation R* and a relation R∞, where R is a 

relation on a set A. 

7) Define a partition of a set. List all partitions of a set A = {1, 2, 3}. 

8) Define Boolean product and Boolean addition of two Boolean 

matrices. 

9) Let A = {1, 2, 3, 4} and R = {(1 , 1) , (1 , 2) , (2 , 3) , (3 , 1) , (4 , 

3) , (3 , 2)}. Find R(1) , R(2) , R(X) if X = {3, 4}. 

10) Let A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
110
001

 , B = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

101
100
111

. Compute A∨  B and A ∧  B. 
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11) Let A = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

100
011
010
011

 ,  B = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1101
0110
0001

. Compute A  B.   

12) Let A = {a, b, c, d, e}and R be a relation on A and matrix of 

relation R is  MR = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00001
00110
11000
01100
00011

. Find R and its diagraph. 

13) If A = {1, 2, 3, 4, 5, 6, 7}and R = {(1 , 2) , (1 , 4) , (2 , 3) , (2 , 5) , 

(3 , 6) , (4 , 7)}then compute the restriction of R to B = {1, 2, 4, 5}. 

14) Let A = {a, b, c, d} and R be the relation on A that has matrix of 

relation is MR = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1010
0111
0010
0001

. Construct its diagraph. Also find 

indegree and outdegree for each vertex. 

15) Find the relation and its matrix whose diagraph is given below :  

                  

   

4 

1

3

5 

2
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16) For the following diagraph list the indegree and out degree of each 

vertex. Also write the corresponding relation :  

    

2 : Multiple choice Questions of 1 marks 
1) Let A = {1, 2, 3, 4} , B = {1, 4, 6, 8, 9} and R be a relation from A 

to B defined by aRb ⇔ b = a2. Then dom(R) = - - - -  

  a) {1, 2, 3, 4}   b) {1, 2, 3}  

  c) {1, 4, 9}   d) {1, 4, 9, 16} 

2) Let A = {1, 2, 3, 4} , B = {1, 4, 6, 8, 9} and R be a relation from A 

to B defined by aRb ⇔ b = a2. Then Ran(R) = - - - -  

  a) {1, 2, 3, 4}   b) {1, 2, 3}  

  c) {1, 4, 9}   d) {1, 4, 9, 16} 

3) Let A = {1, 2, 3, 4, 6, 9, 12} and R be a relation on A defined by 

aRb ⇔ a is a multiple of b. Then R-relative set of 6 is - - - -  

  a) {1, 2, 3, 6}   b) {6, 12} 

  c) {1, 2, 3}   d) {12} 

4)  A relation R on a set A is reflexive if and only if - - - -  

a) all diagonal entries of MR are 1 and non diagonal entries    

    of MR are 0 

b) all diagonal entries of MR are 1 

c) all diagonal entries of MR are 0 

1 2

4 3
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d) all diagonal entries of MR are 0 and non diagonal entries    

    of MR are 1 

5) A relation R on a set A is irreflexive if and only if - - - -  

a) all diagonal entries of MR are 1 and non diagonal entries    

    of MR are 0 

b) all diagonal entries of MR are 1 

c) all diagonal entries of MR are 0 

d) all diagonal entries of MR are 0 and non diagonal entries    

          of MR are 1 

 6) Let R be a relation on a set A. Then 2R
M  = - - - -  

 
   a) MR⊕MR  b) MR∨MR  c) MR∧MR  d) MR MR 

 7)  Symmetric closure of a relation R on a set A is  - - - -  

   a) R   b) R-1   c) R∪R-1  d) R∩R-1. 

 8) Let A = {1, 2, 3, 4}. Which of the following is a partition of A? 

   a) {{1,2} , {3}}  b) {{1,2} , {3,4}} 

   c) {{1,2,3} , {2,3,4}}         d) {{1,2} , {2,3} , {1,2} , {2,3}} 

 

3 : Questions of 4 marks 
1) If R and S are equivalence relations on a set A then show that the 

smallest equivalence relation containing R and S is (R ∪ S)∞. 

2) If R is a relation on A = {a1, a2,  - - - , an} then show that 2R
M = 

MR MR. 

3) Let R be a relation on a set A. Prove that R∞ is a transitive closure of 

R. 

4) Let A be a set  with n elements and R be a relation on A. Prove that R∞ 

= R ∪ R2 ∪ - - - -∪ Rn. 
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5) Explain the method of finding partitions A/R, where R is an 

equivalence relation on a finite set A. Let A = {1, 2, 3, 4} and R = {(1 

, 1) , (1 , 2) , (2 , 1) , (2 , 2) , (3 , 4) , (4 , 3) , (3 , 3) , (4 , 4)} be an 

equivalence relation on A. Find A/R. 

6) Let P be a partition of a set A. Define a relation R on A by “aRb if and 

only if a and b belong to same set in P”. Prove that R is an equivalence 

relation on A. 

7) Explain Warshall’s algoritham. Using Warshall’s algoritham find the 

transitive closure of a relation R whose matrix is MR  =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010
011
001

. 

8) Using Warshall’s algoritham find the transitive closure of a relation R 

whose matrix is MR = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1001
0110
0110
1001

 

9) Using Warshall’s algoritham find the transitive closure of a relation R 

whose matrix is MR = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1011
0110
0110
1001

 

10) Compute W1, W2, W3 as in Warshall’s algoritham for the relation R on 

a set A = {1, 2, 3, 4, 5}and matrix of R is MR = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10010
00001
11000
00010
01001

 = 

W0. 
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11) Let A = {1, 2, 3} and R = {(1 , 1) , (1 , 2) , (2 , 3) , (1 , 3) , (3 , 1) , (3 , 

2)}. Find the matrix  ∞R
M  using the  formula  ∞R

M = MR ∨ (MR)2 

∨  (MR)3. 

12) Let A = {a, b, c} and R = {(a , a) , (b , b) , (b , c) , (c , b) , (c , c)}. 

Find the matrix  ∞R
M  using the  formula  ∞R

M = MR ∨ (MR)2 ∨  

(MR)3. 

13) Let A = {1, 2, 3} and B = {a, b, c, d, e, f}and R = {(1 , a) , (1 , c) , (2 , 

d) , (2 , e) , (2 , f) , (3 , b)}. Let X = {1, 2} , Y = {2, 3}. Show that 

R(X ∪ Y) = R(X) ∪ R(Y) and R(X ∩ Y) = R(X) ∩ R(Y). 

14) Let A = {1, 2, 3, 4, 5} and R = {(1 , 1) , (1 , 2) , (2 , 3) , (3 , 5) , (3 , 4) 

, (4 , 5)}. Compute R2 , R∞ and draw diagraph for R2. 

15) Let A = {x, y, z, w, t} and R = {(x , y) , (x , w) , (y , t) , (z , x) , (z , t) , 

(t , w)}. Compute R2 , R∞ and draw diagraph for R2. 

16)  Let A = {1, 2, 3, 4, 5, 6, 7} and R = {(1 , 2) , (1 , 4) , (2 , 3) , (2 , 5) , 

(3 , 6) , (4 , 7)} be a relation on A. Find i) R-relative set of 4 ii) R-

relative set of  2  iii) restriction of  R to B, where B = {2, 3, 4, 5}. 

17) Determine the partitions A/R for the following equivalence relations 

on A  

i) A = {1, 2, 3, 4} and R = {(1 , 1) , (1 , 2) , (2 , 1) , (2 , 2) , 

(1 , 3) , (3 , 1) , (3 , 3) , (4 , 1) , (4 , 4)}.   

ii) S = {1, 2, 3, 4}and A = S ×  S and R be a relation on A 

defined by (a , b)R(c , d) ⇔ ad = bc. 

18) Let A = {1, 2, 3, 4}and R be a relation on A whose matrix is MR = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0010
0110
0111
0000

 . Find the reflexive closure of R and symmetric closure 

of R. 
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19) Let A = {1, 2, 3, 4}and R be a relation on A whose matrix is MR = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1101
1001
1000
1111

 . Find the reflexive closure of R and symmetric closure 

of R. 

20) Let R, S be relations from A = {1, 2, 3} to B = {1, 2, 3, 4} whose 

matrices are MR = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0111
1000
1011

 and MS =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0011
1001
0110

. Find  

i) 
R

M    ii) 
S

M  iii) SRM ∪  

21) Let R, S be relations from A = {1, 2, 3, 4} to B = {1, 2, 3} whose 

      matrices are MR = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

101
010
110
101

 and MS = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

111
101
101
010

 . Find 

 i) 1R
M −  ii) 1S

M −  iii) 1S)(R
M −∪

. 

22)  Using Warshall’s algoritham , find the transitive closure of relation R 

        on a set A = {1, 2, 3, 4} given by diagraph :  

    
 23) Using Warshall’s algoritham , find the transitive closure of relation R 

                 on a set A = {a, b, c, d} given by diagraph : 

1 2

4 3
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 24) Let R be a relation whose diagraph is given below : 

 

                    

i) List all paths of length 2 starting from vertex 2. 

ii) Find a cycle starting at vertex 2. 

iii) Draw diagraph of R2. 

25) Let R be a relation whose diagraph is given below : 

 

2 3

1 

4 

5

6

a b

d c
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iv) List all paths of length 3 starting from vertex 3. 

v) Find a cycle starting at vertex 6. 

vi) Find  3R
M . 

    

Unit – II 

1 : Questions of 2 marks 
1) Define i) a message  ii) a word 

2) Define i) an (m , n) encoding function ii) an alphabet 

3) Define i) a code word ii) a code 

4) Define weight of a word. Find the weight of a word 110110101. 

5) Define parity check code. If e : B4 → B5 is a parity check code then 

find e(1010) and e(1011). 

6) Define the Hamming distance between the words x, y ∈ Bm. If e : B4 

→ B5 is a parity check code then find δ(e(0110) , e(1101)) 

7) If e : B4 → B5 is a parity check code then find  

i) δ(e(1011) , e(1101))   ii) δ(e(0011) , e(1001)) 

2 3

1 

4 

5

6
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8)  Define the minimum distance of an encoding function. If  e : B2 → B4   

      is encoding function defined by e(b1b2) = b1b2b1b2 then find minimum 

     distance of e. 

9) Find the minimum distance of (2 , 3) parity check code. 

10) If  e : B2 → B4  is encoding function defined by e(b1b2) = b1b2b2b1b2,   

      then find minimum distance of e. 

11) Define Parity check matrix. If H = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

10
01
11

 is a parity check matrix   

      then find (1,3) group code eH : B1 → B3. 

12) Define the minimum distance of a decoding function. 

13) Find weight of each of the following words in B4 : x = 1010 ,  y =   

       1110 ,  z = 0000 ,  w = 1111. Also find δ(x , y) ,  δ(z , w). 

14) Find weight of each of the following words in B7 : x = 1100010,  y =   

       1010110,  z = 1111111,  w = 1110101. Also find δ(x , y) ,  δ(z , w). 

15) Compute   i) ⎥
⎦

⎤
⎢
⎣

⎡
110
011

 ⊕ ⎥
⎦

⎤
⎢
⎣

⎡
110
111

             ii) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

101
110
101

 *  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

101
110
011

 

16) Compute   i)  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

101
110
101

 ⊕ 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

101
110
101

            ii) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

10
01
11

 *  ⎥
⎦

⎤
⎢
⎣

⎡
011
110

 

17) If Bm = B×B×  - - - ×B (m factors) is a group under the binary 

       operation ⊕  then i) Find the identity element of  Bm. 

       ii) Find inverse of x ∈ Bm.  iii) Write the order of  Bm. 

18) Let e be the (3 , 8) encoding function with minimum distance 3. Let d     

       be the associated maximum likelihood decoding function. Determine 

       the number of errors that (e,d) can correct. 
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19) Let H = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10
01
10
11

 be a parity check matrix. Decode 0101 relative to a 

      maximum likelihood decoding function associate with eH. 

20) Let H = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10
01
10
11

 be a parity check matrix. Decode 1101 relative to a  

     maximum likelihood decoding function associate with eH. 

21) If H = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10
01
10
11

 is a parity check matrix then find (2,4) group code      

       eH : B2 → B4. 

22) Define decoding function d : B9 → B3 by d(y1y2y3y4y5y6y7y8y9) = 

       z1z2z3, where zi = 
⎩
⎨
⎧

++

++

s1'  than twoless has )y,y,(y if      0,
s1' least twoat  has )y,y,(y  if    1,

6i3ii

6i3ii , 1 ≤ i ≤ 3. 

       Determine  i) d(101111101)  ii) d(100111100). 

23) Define decoding function d : B9 → B3 by d(y1y2y3y4y5y6y7y8y9) = 

       z1z2z3, where zi = 
⎩
⎨
⎧

++

++

s1'  than twoless has )y,y,(y if      0,
s1' least twoat  has )y,y,(y  if    1,

6i3ii

6i3ii  , 1 ≤ i ≤ 3. 

       Determine  i) d(010000010)  ii) d(011000011). 

24) Define decoding function d : B6 → B2 by d(y1y2y3y4y5y6) = z1z2, 

       where zi = 
⎩
⎨
⎧

++

++

s1'  than twoless has )y,y,(y if      0,
s1' least twoat  has )y,y,(y  if    1,

4i2ii

4i2ii  , 1 ≤ i ≤ 2. 

       Determine  i) d(111011)  ii) d(010100)  iii) d(101011)  ii) d(000110). 
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2 : Multiple choice Questions of 1 marks 
1) If e : Bm → Bn is an encoding function then - - - -  

  a) m < n and e is onto b) m < n and e is one one  

  c) m > n and e is onto d) m > n and e is one one 

 2) If x ∈ Bm then weight of x is - - - -  

  a) the number of 0’s in x  b) the number of 1’s in x  

c) the difference of the number of 1’s and the number of 0’s in x 

d) m 

3)  If an encoding function e : Bm → Bn is a parity check code then - - 

- - - - 

  a) m = n + 1     b) n = m + 1 c) m = n  d) n = m + m 

4) If minimum distance of  an encoding function e : Bm → Bn is k 

then e can detect - - - - 

 a) k or fewer errors    b) less than k errors  

 c) more than k errors  d) k + 1 errors 

5)  An encoding function e : Bm → Bn is a group code if  

 a) Ran{e} is a subgroup of Bm. b) Ran{e} is a subgroup of Bn. 

 c) Ran{e} is not a subgroup of Bm. d) none of these 

6) If d : Bn → Bm is a (n,m) decoding function then - - - - 

 a) m ≤ n and d is onto b) m ≤ n and d is one one  

 c) m ≥ n and d is onto d) m ≥ n and d is one one 

7 Let e : Bm → Bn be an encoding function with minimum distance 

2k + 1. If d is maximum likehood decoding function associated 

with e then [ed] can correct - - - - 

 a) more than k errors  b) more than 2k + 1 errors 

 c) k errors    d) less than or equal to k errors 

8) If B = {0 , 1} then order of a group B4 = - - - -  

 a) 2   b) 4   c) 8   d) 16 
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3 : Questions of 3 marks 
1) Let x, y be elements of Bm. Show that  i) δ(x , y) ≥ 0  

                       ii) δ(x , y)  =  0 ⇔ x = y. 

2)  Let x, y, z be elements of Bm. Show that  i) δ(x , y) =  δ(y , x)  

                       ii) δ(x , y)  ≤ δ(x , z) + δ(z , y). 

1) If minimum distance of an encoding function e : Bm → Bn is at least   

k + 1 then prove that e can detect k or fewer errors. 

2) If an encoding function e : Bm → Bn can detect k or fewer errors then 

prove that its minimum distance is at least  k + 1. 

3) Let  e : Bm → Bn be a group code. Prove that the minimum distance of 

e is the minimum weight of a non zero code. 

4) Let m < n, n – m = r and  x = b1b2 - - - - bmx1x2 - - - xr ∈ Bn and x * H 

= 0 , where H is the parity check matrix of order nxr. Show that there 

exists an encoding function eH : Bm → Bn such that x = eH(b), for some 

b ∈ Bm. 

5) Consider (3 , 6) encoding function e : B3 → B6 defined by e(000) = 

000000, e(001) = 001100, e(010) = 010011, e(100) = 100101, e(011) 

= 011111, e(101) = 101001, e(110) = 110110, e(111) = 111010. Show 

that e is a group code. 

6) Consider (3 , 6) encoding function e : B3 → B6 defined by e(000) = 

000000, e(001) = 001100, e(010) = 010011, e(100) = 100101, e(011) 

= 011111, e(101) = 101001, e(110) = 110110, e(111) = 111010. How 

many errors will e detect? 
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7) Consider (3 , 8) encoding function e : B3 → B8 defined by e(000) = 

00000000, e(001) = 10111000, e(010) = 00101101, e(100) = 

10100100, e(011) = 10010101, e(101) = 10001001, e(110) = 

00011100, e(111) = 00110001. How many errors will e detect? 

8) Consider (3 , 8) encoding function e : B3 → B8 defined by e(000) = 

00000000, e(001) = 10111000, e(010) = 00101101, e(100) = 

10100100, e(011) = 10010101, e(101) = 10001001, e(110) = 

00011100, e(111) = 00110001. Is e a group code? Why? 

9) Consider (2 , 6) encoding function e : B2 → B6 defined by e(00) = 

000000, e(01) = 011110, e(10) = 101010, e(11) = 111000. Find the 

minimum distance of e. Is e a group code? Why? 

10) Consider (2 , 6) encoding function e : B2 → B6 defined by e(00) = 

000000, e(01) = 011110, e(10) = 101010, e(11) = 111000. How many 

errors will e detect? 

11) Let e be (3 , 5) encoding function defined by e(000) = 00000, e(001) = 

11110, e(010) = 01101, e(100) = 01010, e(011) = 10011, e(101) = 

10100, e(110) = 00111, e(111) = 11001. Show that e is a group code. 

12) Let e be (3 , 5) encoding function defined by e(000) = 00000, e(001) = 

11110, e(010) = 01101, e(100) = 01010, e(011) = 10011, e(101) = 

10100, e(110) = 00111, e(111) = 11001. How many errors will e 

detect? 

13)  Let H = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

100
010
001
110
011

 be a parity check matrix. Determine the group 

code eH : B2 → B5.  
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14) Let H = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

100
010
001
110
101
011

 be a parity check matrix. Determine the group code 

eH : B3 → B6.  

15) Let H = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

100
010
001
111
110
001

 be a parity check matrix. Determine the group code 

eH : B3 → B6.  

16) Consider (3 , 8) encoding function e : B3 → B8 defined by e(000) = 

00000000, e(001) = 10111000, e(010) = 00101101, e(100) = 

10100100, e(011) = 10010101, e(101) = 10001001, e(110) = 

00011100, e(111) = 00110001. Let d be an (8 , 3) maximum 

likelihood decoding function associate with e. How many errors can 

(e,d) detect? 

17) Consider (3 , 5) encoding function e : B3 → B5 defined by by e(000) = 

00000, e(001) = 11110, e(010) = 01101, e(100) = 01010, e(011) = 

10011, e(101) = 10100, e(110) = 00111, e(111) = 11001. Let d be an 

(5 , 3) maximum likelihood decoding function associate with e. How 

many errors can (e,d) detect? 

18) Let e be the (3 , 8) encoding function with minimum distance 4. Let d 

be the associated maximum likelihood decoding function. Determine 

the number of errors that (e,d) can correct. 



 16

19) Find i)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1011
0110
0110
1001

 ⊕ 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1011
0110
0110
1001

   ii) 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1011
0110
0110
1001

*
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1011
0110
0110
1001

 

20) Explain the procedure for obtaining a maximum likelihood decoding 

function associated with a group code e : Bm → Bn.  

21) Explain the decoding procedure for a group code given by a parity 

check matrix. 

22) Let H = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

100
010
001
110
011
001

 be a parity check matrix. Decode 011001 relative 

to a maximum likelihood decoding function associate with eH. 

23) Let H = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

100
010
001
110
011
001

 be a parity check matrix. Decode 101011 relative 

to a maximum likelihood decoding function associate with eH. 

 
Unit – III 

1 : Questions of 2 marks 
1) Let (R , +) be a group of  real numbers under addition. Show that f : R → R,               

    defined by f(x) = 3x , for all x ∈ R, is a group homomorphism. Find Ker(f). 

2) Let (R , +) be a group of  real numbers under addition. Show that f :   R → R,   

    defined by f(x) = 2x , for all x ∈ R, is a group homomorphism. Find Ker(f). 
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3) If (R , +) is a group of  real numbers under addition and (R+ , ) is a group of 

     positive real numbers under multiplication. Show that f : R → R+, defined by 

     f(x) = ex , for all x ∈ R, is a group homomorphism. Find Ker(f). 

4) Let (R* , ) be a group of non zero real numbers under multiplication. Show 

     that f : R* → R*, defined by f(x) = x3 , for all x ∈ R*, is a group 

     homomorphism. Find Ker(f). 

5) Let (C* , ) be a group of non zero complex numbers under multiplication. 

    Show that f : C* → C*, defined by f(z) = z4 , for all z ∈ C*, is a group 

    homomorphism. Find Ker(f). 

6) Let (Z , +) be a group of  integers under addition and G = {5n : n ∈ Z} a group 

    under multiplication. Show that f : Z → G, defined by f(n) = 5n , for all n ∈ Z, 

    is onto group homomorphism.  

7) Let (Z , +) and (E , +) be the groups of  integers and even integers respectively  

    under addition. Show that f : Z → E, defined by f(n) = 2n , for all n ∈ Z, is an 

    isomorphism. 

8) Define a group homomorphism. Let (G , *) , (G′ , *′) be groups with identity  

    elements e , e′ respectively. Show that f : G → G′, defined by f(x) = e′ , for all 

    x ∈ G, is a group homomorphism. 

9) Let G = {a , a2 , a3 , a4 , a5 = e} be the cyclic group generated by a. Show that  

    f : (Z5 , +5) → G, defined by f( n ) = an , for all n  ∈ Z5, is a group 

    homomorphism. Find Ker(f). 

10) Let f : (R , +) → (R , +) be defined by f(x) = x + 1 , for all x ∈ R. Is f a group 

      homomorphism? Why? 

11) Let G = {1 , -1 , i , -i} be a group under multiplication and Z′
8 = {1 , 3  , 5  , 

       7 } a group under multiplication modulo 8.  Show that G and Z′
8 are not 

       isomorphic. 

12) Show that the group (Z4 , +4) is isomorphic to the group (Z′
5 , × 5). 
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13) Let f : G → G′ be a group homomorphism. If a ∈ G and o(a) is finite then 

      show that o(f(a))⏐o(a). 

14) Let f : G → G′ be a group homomorphism If  H′ is a subgroup of G′ then  

       show that Ker(f) ⊆ f -1(H′). 

15) Let f : G → G′ be a group homomorphism and o(a) is finite, for all a ∈ G. If f 

       is one one  then show that o(f(a)) = o(a). 

16)  Let f : G → G′ be a group homomorphism and  o(f(a)) = o(a), for all a ∈ G. 

      Show that f is one one. 

 

2 : Multiple choice Questions of 1 marks 
Choose the correct option from the given options.  

1) Every finite cyclic group of order n is isomorphic to  - - -   

a) (Z , +) b) (Zn , +n) c) (Zn , × n) d)  (Z′
n , × n)  

2) Every infinite cyclic group is isomorphic to  - - -   

a) (Z , +) b) (Zn , +n) c) (Zn , × n) d)  (Z′
n , × n)  

3) Let f : G → G′ be a group homomorphism and  a ∈ G. If o(a) is finite 

then - - - 

a) o(f(a)) = ∞   b) o(f(a))⏐o(a). 

c) o(a)⏐o(f(a))  d) o(f(a)) = 0. 
4) A group G = {1 , -1 , i , -i} under multiplication is not isomorphic to  - 

- -  

a) (Z4 , +4)   b) G      

 c) (Z′
8 , × 8)    d) none of these. 

5) Let f : G → G′ be a group homomorphism. If G is abelian then f(G) is 

- - -  

a) non abelian  b) abelian 

c) cyclic   d) empty set 
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6) Let f : G → G′ be a group homomorphism. If G is cyclic then f(G) is - 

- -  

a) non abelian  b) non cyclic 

c) cyclic   d) finite set 

7) A onto group homomorphism f : G → G′ is an isomorphism if Ker(f) = 

- - -  

a) φ  b) {e)   c) {e′}  d)  none of these 

8) A function f : G → G , (G is a group) , defined by f(x) = x-1, for all x 

∈ G, is an automorphism if and only if G is - - -  

a) abelian b) cyclic c) non abelian d) G =  φ. 

 

3 : Questions of 4 marks 
1) Let f : G → G′ be a group homomorphism . prove that f(G) is a subgroup 

of G′. Also prove that if G is abelian then f(G) is abelian. 

2) Let f : G → G′ be a group homomorphism. Show that f is one one if and 

only if Ker(f) = {e}. 

3) Let G = {1 , -1 , i , -i} be a group under multiplication. Show that  f : (Z , 

+) → G, defined by f(n) = in , for all n ∈ Z, is onto group homomorphism. 

Find Ker(f). 

4) Let G = {1 , -1 , i , -i} be a group under multiplication. Show that  f : (Z , 

+) → G, defined by f(n) =(–i)n , for all n ∈ Z, is onto group 

homomorphism. Find Ker(f). 

5) Let G = 
⎭
⎬
⎫

⎩
⎨
⎧

≠+∈⎥
⎦

⎤
⎢
⎣

⎡
−

02b2a  R,b, a :
ab
ba

 be a group under 

multiplication and C* be a group of non zero complex numbers under 
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multiplication. Show that f : C*  → G defined by f(a + ib) =  ⎥
⎦

⎤
⎢
⎣

⎡
− ab

ba , for 

all a + ib ∈ C*, is an isomorphism. 

6) Define a group homomorphism. Prove that homomorphic image of a 

cyclic group is cyclic. 

7) Let f : G → G′ be a group homomorphism. Prove that  

i) f(e) is the identity element of G′, where e is the identity element 

of G 

ii) f(a-1) = (f(a))-1, for all a ∈ G 

iii) f(am) = (f(a))m, for  all a ∈ G, m ∈ Z. 

8) Let (C* , ) .(R* , ) be groups of non zero complex numbers, non zero real 

numbers respectively under multiplication. Show that f : C* → R* defined 

by f(z) =  | z |, for all z  ∈ C*, is a group homomorphism. Find Ker(f). Is f 

onto? Why?  

9) Let (C* , ) , (R* , ) be groups of non zero complex numbers, non zero 

real numbers respectively under multiplication. Show that f : C* → R* 

defined by f(z) =  | z  |, for all z  ∈ C*, is a group homomorphism. Find 

Ker(f). Is f onto? Why?  

10) Let G = {1 , -1} be a group under multiplication. Show that f : (Z , +)  → 

G defined by f(n) = 
⎩
⎨
⎧
− odd isn  if     ,        1

isevenn  if   ,         1 
      

is onto group homomorphism. Find Ker(f).  

11) Let (R+ , ) be a group of positive reals under multiplication. Show that f : 

(R , +)  → R+ defined by f(x) = 2x, for all x ∈ R, is an isomorphism. 

12)  Let (R+ , ) be a group of positive reals under multiplication. Show that f : 

(R , +)  → R+ defined by f(x) = ex, for all x ∈ R, is an isomorphism. 

13)  If f : G  → G′ is an isomorphism and a ∈ G then show that o(a) = o(f(a)). 

14)  Prove that every finite cyclic group of order n is isomorphic to (Zn , +n). 
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15) Prove that every infinite cyclic group is isomorphic to (Z , +). 

16) Let G be a group of all non singular matrices of order 2 over the set of 

reals and R* be a group of all nonzero reals under multiplication. Show 

that f : G  → R* , defined by f(A) =  | A |, for all A ∈ G, is onto group 

homomorphism. Is f one one? Why? 

17)  Let G be a group of all non singular matrices of order n over the set of 

reals and R* be a group of all nonzero reals under multiplication. Show 

that f : G  → R* , defined by f(A) =  | A |, for all A ∈ G, is onto group 

homomorphism. 

18)  Let R* be a group of all nonzero reals under multiplication. Show that f : 

R* → R* , defined by f(x) =  | x |, for all x ∈ R*, is a group 

homomorphism. Is f onto? Justify. 

19)  Prove that every group is isomorphic to it self. If G1 , G2 are groups such 

that G1 ≅  G2 then prove that G2 ≅  G1. 

20)  Let G1 , G2 , G3  be groups such that G1 ≅  G2  and G2 ≅  G3. Prove that 

G1 ≅  G3. 

21) Show that f : (C , +)  → (C , +)defined by f(a + ib) = –a + ib, for all a + ib 

∈ C, is an automorphism. 

22) Show that f : (C , +)  → (C , +) defined by f(a + ib) = a – ib, for all a + ib 

∈ C, is an automorphism. 

23)  Show that f : (Z , +)  → (Z , +) defined by f(x) =  – x, for all x ∈ Z, is an 

automorphism. 

24)  Let G be an abelian group. Show that f : G → G defined by f(x) = x-1, for 

all x ∈ G, is an automorphism. 

25) Let G be a  group  and a ∈  G. Show that  fa : G → G defined by fa(x) = 

axa-1, for all x ∈ G, is an automorphism. 

26) Let G  be a  group  and  a ∈  G.  Show that   fa : G → G defined by fa(x) = 

a-1xa,  for all x ∈ G, is an automorphism. 
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27)  Let G  = {a , a2 , a3 , - - -  , a12 (= e)}be a cyclic group generated by a. 

Show that f : G → G defined by f(x) = x4, for all x ∈ G, is a group 

homomorphism. Find Ker(f). 

28) Let G  = {a , a2 , a3 , - - -  , a12 (= e)}be a cyclic group generated by a. 

Show that f : G → G defined by f(x) = x3, for all x ∈ G, is a group 

homomorphism. Find Ker(f). 

29)  Show that f : (C , +)  → (R , +) defined by f(a + ib) = a, for all a + ib ∈ 

C, is onto homomorphism. Find Ker(f). 

30)  Show that homomorphic image of a finite group is finite. Is the converse 

true? Justify. 

 

Unit – IV 

1 : Questions of 2 marks 
1) In a ring (Z , ⊕  , ), where a ⊕  b = a + b – 1 and a  b = a + b – ab , for 

all  a , b ∈ Z, find zero element and identity element. 

2) Define an unit. Find all units in (Z6 , +6 , ×6). 

3) Define a zero divisor. Find all zero divisors in (Z8 , +8 , ×8). 

4) Let R be a ring with identity 1 and a ∈ R. Show that 

i) (–1)a =  –a    ii)(–1) (–1) = 1 

5) Let R be a commutative ring and a , b ∈ R. Show that (a – b)2 = a2 – 2ab 

+ b2. 

6) Let (Z[ 5− ] , + , ) be a ring under usual addition and multiplication of 

elements of  Z[ 5− ]. Show that Z[ 5− ] is a commutative ring . Is 2 + 

3 5−  a unit in Z[ 5− ]? 

7) Let m  ∈ (Zn , +n , ×n) be a zero divisor. Show that m is not relatively 

prime to n, where n > 1. 
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8) If m  ∈ (Zn , +n , ×n) is invertible then show that m and n are relatively 

prime to n, where n > 1. 

9) Let n > 1  and  0 < m < n.  If  m  is relatively  prime to n then show that 

m  ∈ (Zn , +n , ×n) is invertible. 

10)  Let n > 1 and 0 < m < n. If m is not relatively prime to n then show that 

m  ∈ (Zn , +n , ×n) is a zero divisor. 

11)  Show that a field has no zero divisors. 

12) Let R be a ring in which a2 = a, for all a ∈ R. Show that a + a = 0, for all a 

∈ R. 

13) Let R be a ring in which a2 = a, for all a ∈ R. If a , b ∈ R and a + b = 0,  

then show that a = b. 

14) Let R be a commutative ring with identity 1. If a , b are units in R then 

show that a-1 and ab are units in R. 

15)  In (Z12 , +12 , ×12) find  (i) (3 )2 +12  (5 )-2  (ii)  ( 7 )-1 +12  8 . 

16) In (Z12 , +12 , ×12) find  (i) (5 )-1 –  7   (ii)  (11)-2 +12  5 .  

 

 

2 : Multiple choice Questions of 1 marks 
 

Choose the correct option from the given options.  

 

1) R = {± 1, ± 2, ± 3, - - - } is not a ring under usual addition and 

multiplication of integers because - - -   

a) R is not closed under multiplication 

b) R is not closed under addition 

c) R does not satisfy associativity w.r.t. addition 

d) R does not satisfy associativity w.r.tmultiplication 

2) Number of zero divisors in (Z6 , +6 , ×6) =  - - - 
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a)   0  b)  1  c)  2  d)  3 

3) (Z43 , +43 , ×43)  is - - -  

a) both field and integral domain 

b) an integral domain but not a field 

c) a field but not an integral domain 

d) neither a field nor an integral domain 

4) In (Z9 , +9 , ×9) , 6  is - - -  

a)  a zero divisor   b) an invertible element 

c) a zero element  d) an identity element 

5) Every Boolean ring is - - - 

a)  an integral domain b)  a field  

c)  a commutative ring d)  a division ring 

6) If a is a unit in a ring R then a is - - -  

a)  a zero divisor  b)  an identity element 

c)  a zero element  d)  an invertible element 

7) If R is a Boolean ring and a ∈ R then - - -  

a)  a + a = a b)  a2 = 0 c)  a2 = 1 d)  a + a = 0 

8) Value of  ( 7 )2 –  7  in (Z8 , +8 , ×8)  is  - - - 

a)  6   b) 4   c)  2   d)   0  

 

3 : Questions of 6 marks 
1a) Define i) a ring   ii) an integral domain iii) a division ring. 

b) Show that the set R = {0, 2, 4, 6} is a commutative ring under 

          addition and multiplication modulo 8. 

2a) Define i) a commutative ring  ii) a field iii) a skew field. 

b) In 2Z, the set of even integers, we define a + b = usual addition 

of a and b and a  b = 
2
ab . Show that (2Z , + ,  ) is a ring. 
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3 a) Define i) a ring with identity element ii) an unit element iii) a   

          Boolean ring.  

b) Let (2Z , +) be an abelian group of even integers under usual    

 addition. Show that (2Z , + ,  ) is a commutative ring with      

 identity 2, where a  b = 
2
ab , for all a , b ∈ 2Z. 

4)   a) Define i) a zero divisor   ii) an invertible element iii) a field. 

b) Let (3Z , +) be an abelian group under usual addition where 3Z 

     = {3n ⎢n ∈ Z}. Show that (3Z , + ,  ) is a commutative ring 

     with identity 3, where a  b = 
3
ab , for all a , b ∈ 3Z. 

5)  a) Let (R, +, ) be a ring and a, b, c ∈ R. Prove that  

i) a  0 = 0  ii) (a – b)c = ac – bc. 

b)   Show that (Z , ⊕  , )is a ring, where a ⊕  b = a + b – 1 and a 

       b = a + b – ab , for all  a , b ∈ Z. 

6) a) Let (R, +, ) be a ring and a, b, c ∈ R. Prove that  

i) a  (–b) =  –(ab)   ii) a (b – c)c = ab – ac. 

b)   Show that the abelian group (Z[ 5− ] , +) is a ring under 

multiplication                                                                                (a 

+ b 5− )(c + d 5− ) =  ac – 5bd + (ad + bc) 5− . 

7) a) Define i) a division ring ii) an unit element iii) an integral domain 

b) Show that the abelian group (Z[i] , +) is a ring under 

multiplication                                                                                         

(a + bi)(c + di) =  ac – bd + (ad + bc) i, for all a + bi ,c + di ∈ Z[i]. 

8a) Let R be a ring with identity 1 and (ab)2 = a2b2, for all a, b ∈ R. Show 

       that R is commutative. 

   b)Show that the abelian group (Zn , +n) is a commutative ring with 

       identity 1 under multiplication modulo n operation. 
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9  a) Show that a ring R is commutative if and only if (a + b)2 = a2 + 2ab + 

          b2, for all a, b ∈ R. 

     b) Show that Z[i] = {a + ib ⎢a , b ∈ Z}, the ring of Gaussian integers, 

          is an integral domain. 

10  a) Show that a commutative ring R is an integral domain if and only if  

           a , b , c ∈ R, a ≠ 0, ab = ac ⇒ b = c. 

b) Prepare addition modulo 4 and multiplication modulo 4 tables. Find 

    all invertible elements in Z4. 

11 a) Show that a commutative ring R is an integral domain if and only if  

          a , b ∈ R, ab =  0 ⇒ either a = 0 or b = 0. 

b) Prepare addition modulo 5 and multiplication modulo 5 tables. Find 

    all invertible elements in Z5. 

12 a) Let R be a commutative ring. Show that the cancellation law with 

    respect to multiplication holds in R if and only if  a , b ∈ R, ab =  0 

    ⇒ either a = 0 or b = 0. 

b) Prepare a multiplication modulo 6 table for a ring (Z6 , +6 , ×6). 

     Hence find all zero divisors and invertible elements in Z6.   

 13 a) For n > 1, show that Zn is an integral if and only if n is prime. 

      b) Let R = 
⎭
⎬
⎫

⎩
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
−

C   wz,  :
zw
wz

 be a ring under addition and 

                    multiplication, where C = {a + ib ⎢a , b ∈ R}. Show that R is a 

                    divison ring. 

14 a)  Prove that every field is an integral domain. Is the converse true? 

           Justify. 

b) Which of the following rings are fields? Why? 

i) (Z , + , ×)            ii)  (Z5 , +5 , ×5)          iii) (Z25 , +25 , ×25). 

15)  a) Prove that every finite integral domain is a field. 

       b) Which of the following rings are integral domains? Why? 
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i) (2Z , + , ×)            ii)  (Z50 , +50 , ×50)          iii) (Z17 , +17 , ×17). 

       16 a) Prove that a Boolean ring is a commutative ring. 

       b) Give an example of  a division ring which is not a field. 

   17  a) for n > 1, show that Zn is a field if and onle if n is prime. 

          b) Let R = {a + bi + cj + dk ⎢a, b, c, d ∈ R}, where i2 = j2 = k2 = –1        

               , ij = k = –ji , jk = i = –kj , ki = j = –ik. Show that every nonzero 

               element of R is invertible. 

    18  a) If R is a ring and a, b ∈ R then prove or disprove (a + b)2 = a2 +  

                         2ab + b2. 

          b) Show that R+ , the set of all positive reals forms a ring under the 

               following binary operations :  

     a ⊕  b = ab and a  b = 
b5log

a , for all a,b ∈ R+. 

    19 a) Define      i) a ring         ii) a Boolean ring        iii) an invertible   

             element. 

          b) Let p be a prime and (pZ , +) be an abelian group under usual 

                         addition, show that (pZ, + , ) is a commutative ring with 

                          identity element p where a  b = 
p
ab , for all a , b ∈ pZ. 

                20) a) Define  i) a ring with identity element   ii) a commutative ring   

                                       iii) a zero divisor. 

            b) Show that R+ , the set of all positive reals forms a ring under the               

                 following binary operations :  

              a ⊕  b = ab and a  b = 
b7log

a , for all a,b ∈ R+. 

 

    *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 


