NORTH MAHARASHTRA UNIVERSITY,

JALGAON

Question Bank

New syllabus w.e.f. June 2008

Class: S.Y. B. Sc. Subject: Mathematics

Paper: MTH – 212 (B) (Computational Algebra)

Prepared By:

1) Dr. J. N. Chaudhari

Haed, Department of Mathematics, M. J. College, Jalgaon.

2) Prof A.H. Patil

Haed, Department of Mathematics, P. O. Nahatha College, Bhusawal.

3) Prof Mrs. R. N. Mahajan

Haed, Department of Mathematics, Dr. A.G.D.B.M.M., Jalgaon.

4) Prof. K. H. Sawakare

Department of Mathematics, P. O. Nahatha College, Bhusawal.

Question Bank

Paper : MTH – 212 (B)

Computational Algebra

Unit – I

1 : Questions of 2 marks

- 1) Define reflexive relation and irreflexive relation.
- 2) Define symmetric and antisymmetric relation.
- 3) Define transitive closure and symmetric closure of a relation R on a set A.
- 4) Define closure and symmetric closure of a relation R on a set A.
- 5) Define reflexive closure of a relation R on a set A. Explain by an example.
- 6) Define rechability relation R^* and a relation R^{∞} , where R is a relation on a set A.
- 7) Define a partition of a set. List all partitions of a set $A = \{1, 2, 3\}$.
- 8) Define Boolean product and Boolean addition of two Boolean matrices.
- 9) Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 3), (3, 1), (4, 3), (3, 2)\}$. Find R(1), R(2), R(X) if $X = \{3, 4\}$.
- 10) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Compute $A \lor B$ and $A \land B$.

11) Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$. Compute $A \odot B$.

12) Let $A = \{a, b, c, d, e\}$ and R be a relation on A and matrix of

relation R is
$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
. Find R and its diagraph.

- 13) If $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 7)\}$ then compute the restriction of R to $B = \{1, 2, 4, 5\}$.
- 14) Let $A = \{a, b, c, d\}$ and R be the relation on A that has matrix of

relation is
$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
 . Construct its diagraph. Also find

indegree and outdegree for each vertex.

15) Find the relation and its matrix whose diagraph is given below:

For the following diagraph list the indegree and out degree of each 16) vertex. Also write the corresponding relation:

2 : Multiple choice Questions of 1 marks

- Let $A = \{1, 2, 3, 4\}$, $B = \{1, 4, 6, 8, 9\}$ and R be a relation from A 1) to B defined by $aRb \Leftrightarrow b = a^2$. Then dom(R) = ---

- a) {1, 2, 3, 4} b) {1, 2, 3} c) {1, 4, 9} d) {1, 4, 9, 16}
- Let $A = \{1, 2, 3, 4\}$, $B = \{1, 4, 6, 8, 9\}$ and R be a relation from A 2) to B defined by $aRb \Leftrightarrow b = a^2$. Then Ran(R) = - -
 - a) {1, 2, 3, 4} b) {1, 2, 3}

- c) {1, 4, 9} d) {1, 4, 9, 16}
- Let $A = \{1, 2, 3, 4, 6, 9, 12\}$ and R be a relation on A defined by 3) aRb ⇔ a is a multiple of b. Then R-relative set of 6 is - - -
 - a) {1, 2, 3, 6}
- b) {6, 12}

c) {1, 2, 3}

- d) {12}
- A relation R on a set A is reflexive if and only if - -4)
 - a) all diagonal entries of M_R are 1 and non diagonal entries of M_R are 0
 - b) all diagonal entries of M_R are 1
 - c) all diagonal entries of M_R are 0

- d) all diagonal entries of M_R are 0 and non diagonal entries of M_R are 1
- A relation R on a set A is irreflexive if and only if - -5)
 - a) all diagonal entries of M_R are 1 and non diagonal entries of M_R are 0
 - b) all diagonal entries of M_R are 1
 - c) all diagonal entries of M_R are 0
 - d) all diagonal entries of M_R are 0 and non diagonal entries of M_R are 1
- Let R be a relation on a set A. Then $M_{R^2} = ----$ 6)
 - $a)\ M_R \oplus M_R \quad b)\ M_R \vee M_R \quad c)\ M_R \wedge M_R \quad d)\ M_R \odot M_R$
- Symmetric closure of a relation R on a set A is ----7)
 - a) \overline{R}
- b) R^{-1} c) $R \cup R^{-1}$ d) $R \cap R^{-1}$.
- Let $A = \{1, 2, 3, 4\}$. Which of the following is a partition of A? 8)
 - a) {{1,2}, {3}}
- b) {{1,2}, {3,4}}

 - c) $\{\{1,2,3\},\{2,3,4\}\}\$ d) $\{\{1,2\},\{2,3\},\{1,2\},\{2,3\}\}$

3 : Questions of 4 marks

- 1) If R and S are equivalence relations on a set A then show that the smallest equivalence relation containing R and S is $(R \cup S)^{\infty}$.
- 2) If R is a relation on A = $\{a_1, a_2, ---, a_n\}$ then show that M_{R^2} = $M_R \odot M_R$.
- 3) Let R be a relation on a set A. Prove that R^{∞} is a transitive closure of R.
- 4) Let A be a set with n elements and R be a relation on A. Prove that R^{∞} $= R \cup R^2 \cup - - - \cup R^n$.

- 5) Explain the method of finding partitions A/R, where R is an equivalence relation on a finite set A. Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)\}$ be an equivalence relation on A. Find A/R.
- 6) Let P be a partition of a set A. Define a relation R on A by "aRb if and only if a and b belong to same set in P". Prove that R is an equivalence relation on A.
- 7) Explain Warshall's algoritham. Using Warshall's algoritham find the transitive closure of a relation R whose matrix is $M_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.
- 8) Using Warshall's algoritham find the transitive closure of a relation R

whose matrix is
$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

9) Using Warshall's algoritham find the transitive closure of a relation R

whose matrix is
$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

10)Compute W₁, W₂, W₃ as in Warshall's algoritham for the relation R on

a set A = {1, 2, 3, 4, 5} and matrix of R is
$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} =$$

 W_0 .

- 11) Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2), (2, 3), (1, 3), (3, 1), (3, 3), (3,$ 2)}. Find the matrix $M_{\mathbf{p}^{\infty}}$ using the formula $M_{\mathbf{p}^{\infty}} = M_{\mathbf{R}} \vee (M_{\mathbf{R}})^2$ $\vee (M_R)^3$.
- 12) Let $A = \{a, b, c\}$ and $R = \{(a, a), (b, b), (b, c), (c, b), (c, c)\}.$ Find the matrix $M_{\mathbf{p}^{\infty}}$ using the formula $M_{\mathbf{p}^{\infty}} = M_{\mathbf{R}} \vee (M_{\mathbf{R}})^2 \vee$ $(M_R)^3$.
- 13) Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d, e, f\}$ and $R = \{(1, a), (1, c), (2, a)\}$ d), (2, e), (2, f), (3, b)}. Let $X = \{1, 2\}$, $Y = \{2, 3\}$. Show that $R(X \cup Y) = R(X) \cup R(Y)$ and $R(X \cap Y) = R(X) \cap R(Y)$.
- 14) Let $A = \{1, 2, 3, 4, 5\}$ and $R = \{(1, 1), (1, 2), (2, 3), (3, 5), (3, 4)\}$, (4,5)}. Compute R^2 , R^{∞} and draw diagraph for R^2 .
- 15) Let $A = \{x, y, z, w, t\}$ and $R = \{(x, y), (x, w), (y, t), (z, x), (z, t), (z, t$ (t, w). Compute R^2 , R^{∞} and draw diagraph for R^2 .
- 16) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(1, 2), (1, 4), (2, 3), (2, 5),$ (3, 6), (4, 7)} be a relation on A. Find i) R-relative set of 4 ii) Rrelative set of 2 iii) restriction of R to B, where $B = \{2, 3, 4, 5\}$.
- 17) Determine the partitions A/R for the following equivalence relations on A
 - $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3),$ i) (1,3),(3,1),(3,3),(4,1),(4,4)
 - $S = \{1, 2, 3, 4\}$ and $A = S \times S$ and R be a relation on A ii) defined by $(a, b)R(c, d) \Leftrightarrow ad = bc$.
- 18)Let A = $\{1, 2, 3, 4\}$ and R be a relation on A whose matrix is $M_R =$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} . F_{1}$$

 $\begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{vmatrix}$. Find the reflexive closure of R and symmetric closure

of R.

19)Let A = $\{1, 2, 3, 4\}$ and R be a relation on A whose matrix is $M_R =$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}.$$
 Find the reflexive closure of R and symmetric closure

of R.

20) Let R, S be relations from $A = \{1, 2, 3\}$ to $B = \{1, 2, 3, 4\}$ whose

matrices are
$$M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
 and $M_S = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. Find

- i) $M_{\overline{R}}$ ii) $M_{\overline{S}}$ iii) $M_{R \cup S}$

21) Let R, S be relations from $A = \{1, 2, 3, 4\}$ to $B = \{1, 2, 3\}$ whose

matrices are
$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 and $M_S = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Find

- i) $M_{R^{-1}}$ ii) $M_{S^{-1}}$ iii) $M_{(R \cup S)^{-1}}$.

22) Using Warshall's algoritham, find the transitive closure of relation R on a set $A = \{1, 2, 3, 4\}$ given by diagraph:

23) Using Warshall's algoritham, find the transitive closure of relation R on a set $A = \{a, b, c, d\}$ given by diagraph:

24) Let R be a relation whose diagraph is given below:

- i) List all paths of length 2 starting from vertex 2.
- ii) Find a cycle starting at vertex 2.
- iii) Draw diagraph of R².
- 25) Let R be a relation whose diagraph is given below:

- iv) List all paths of length 3 starting from vertex 3.
- v) Find a cycle starting at vertex 6.
- vi) Find M_R³.

Unit – II

1 : Questions of 2 marks

- 1) Define i) a message ii) a word
- 2) Define i) an (m, n) encoding function ii) an alphabet
- 3) Define i) a code word ii) a code
- 4) Define weight of a word. Find the weight of a word 110110101.
- 5) Define parity check code. If $e: B^4 \to B^5$ is a parity check code then find e(1010) and e(1011).
- 6) Define the Hamming distance between the words $x, y \in B^m$. If $e : B^4 \to B^5$ is a parity check code then find $\delta(e(0110), e(1101))$
- 7) If $e: B^4 \to B^5$ is a parity check code then find
 - i) $\delta(e(1011), e(1101))$
- ii) $\delta(e(0011)\,,\,e(1001))$

- 8) Define the minimum distance of an encoding function. If $e: B^2 \to B^4$ is encoding function defined by $e(b_1b_2) = b_1b_2b_1b_2$ then find minimum distance of e.
- 9) Find the minimum distance of (2, 3) parity check code.
- 10) If $e: B^2 \to B^4$ is encoding function defined by $e(b_1b_2) = b_1b_2b_2b_1b_2$, then find minimum distance of e.
- 11) Define Parity check matrix. If $H = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ is a parity check matrix then find (1,3) group code $e_H : B^1 \to B^3$.
- 12) Define the minimum distance of a decoding function.
- 13) Find weight of each of the following words in B^4 : x = 1010, y = 1110, z = 0000, w = 1111. Also find $\delta(x, y)$, $\delta(z, w)$.
- 14) Find weight of each of the following words in B^7 : x=1100010, y=1010110, z=1111111, w=1110101. Also find $\delta(x,y)$, $\delta(z,w)$.
- 15) Compute i) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ ii) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
- 16) Compute i) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ ii) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
- 17) If $B^m = B \times B \times - \times B$ (m factors) is a group under the binary operation \oplus then i) Find the identity element of B^m .
 - ii) Find inverse of $x \in B^m$. iii) Write the order of B^m .
- 18) Let e be the (3, 8) encoding function with minimum distance 3. Let d be the associated maximum likelihood decoding function. Determine the number of errors that (e,d) can correct.

19) Let
$$H = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 be a parity check matrix. Decode 0101 relative to a

maximum likelihood decoding function associate with e_H.

20) Let
$$H = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 be a parity check matrix. Decode 1101 relative to a

maximum likelihood decoding function associate with e_H.

- 21) If $H = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ is a parity check matrix then find (2,4) group code $e_H : B^2 \to B^4$.
- 22) Define decoding function $d: B^9 \to B^3$ by $d(y_1y_2y_3y_4y_5y_6y_7y_8y_9) = z_1z_2z_3$, where $z_i = \begin{cases} 1, & \text{if } (y_i, y_{i+3}, y_{i+6}) \text{ has at least two 1's} \\ 0, & \text{if } (y_i, y_{i+3}, y_{i+6}) \text{ has less than two 1's} \end{cases}, 1 \le i \le 3.$ Determine i) d(101111101) ii) d(100111100).
- 23) Define decoding function $d: B^9 \to B^3$ by $d(y_1y_2y_3y_4y_5y_6y_7y_8y_9) = z_1z_2z_3$, where $z_i = \begin{cases} 1, & \text{if } (y_i, y_{i+3}, y_{i+6}) \text{ has at least two 1's} \\ 0, & \text{if } (y_i, y_{i+3}, y_{i+6}) \text{ has less than two 1's} \end{cases}$, $1 \le i \le 3$. Determine i) d(010000010) ii) d(011000011).
- 24) Define decoding function $d: B^6 \to B^2$ by $d(y_1y_2y_3y_4y_5y_6) = z_1z_2$, where $z_i = \begin{cases} 1, & \text{if } (y_i, y_{i+2}, y_{i+4}) \text{ has at least two 1's} \\ 0, & \text{if } (y_i, y_{i+2}, y_{i+4}) \text{ has less than two 1's} \end{cases}$, $1 \le i \le 2$. Determine i) d(111011) ii) d(010100) iii) d(101011) ii) d(000110).

2 : Multiple choice Questions of 1 marks

1)) If $e: B^m \to B^n$ is an encoding function then				
	a) $m \le n$ and e is or	nto b) $m < n$ and e is a	one one		
	c) $m > n$ and e is or	nto d) $m > n$ and e is of	one one		
2)	If $x \in B^m$ then weight of x is				
	a) the number of 0's in x b) the number of 1's in x				
	c) the difference of the number of $1^{\circ s}$ and the number of $0^{\circ s}$ in x				
	d) m				
3)	If an encoding function $e: B^m \to B^n$ is a parity check code then				
	a) $m = n + 1$ b) $n = m + 1$	-1 c) m = n d) n	= m + m		
4)	If minimum distance of an encoding function $e:B^m\to B^n$ is k				
	then e can detect				
	a) k or fewer errors	b) less than k erro	rs		
	c) more than k errors	d) k + 1 errors			
5)	An encoding function $e: B^m \to B^n$ is a group code if				
	a) Ran{e} is a subgroup of B ^m . b) Ran{e} is a subgroup of B ⁿ .				
	c) Ran{e} is not a subgroup of B ^m . d) none of these				
6)	If $d: B^n \to B^m$ is a (n,m) decoding function then				
	a) $m \le n$ and d is onto	b) $m \le n$ and d is one one	2		
	c) $m \ge n$ and d is onto	d) $m \ge n$ and d is one one	;		
7	Let $e: B^m \to B^n$ be an encoding function with minimum distance				
	2k + 1. If d is maximum likehood decoding function associated				
	with e then [ed] can correct				
	a) more than k errors	b) more than 2k + 1 errors			
	c) k errors	d) less than or equal to k	errors		
8)	If $B = \{0, 1\}$ then order of a group $B^4 =$				
	a) 2 b) 4	c) 8 d) 16			

3 : Questions of 3 marks

- 1) Let x, y be elements of B^m . Show that i) $\delta(x, y) \ge 0$
 - ii) $\delta(x, y) = 0 \Leftrightarrow x = y$.
- 2) Let x, y, z be elements of B^m. Show that i) $\delta(x, y) = \delta(y, x)$ ii) $\delta(x, y) \le \delta(x, z) + \delta(z, y)$.
- 1) If minimum distance of an encoding function $e: B^m \to B^n$ is at least k+1 then prove that e can detect k or fewer errors.
- 2) If an encoding function $e: B^m \to B^n$ can detect k or fewer errors then prove that its minimum distance is at least k + 1.
- 3) Let $e: B^m \to B^n$ be a group code. Prove that the minimum distance of e is the minimum weight of a non zero code.
- 4) Let m < n, n m = r and $x = b_1b_2 \cdots b_mx_1x_2 \cdots x_r \in B^n$ and x * H $= \overline{0}$, where H is the parity check matrix of order nxr. Show that there exists an encoding function $e_H : B^m \to B^n$ such that $x = e_H(b)$, for some $b \in B^m$.
- 5) Consider (3, 6) encoding function $e: B^3 \to B^6$ defined by e(000) = 000000, e(001) = 001100, e(010) = 010011, e(100) = 100101, e(011) = 011111, e(101) = 101001, e(110) = 110110, e(111) = 111010. Show that e is a group code.
- 6) Consider (3, 6) encoding function $e: B^3 \to B^6$ defined by e(000) = 000000, e(001) = 001100, e(010) = 010011, e(100) = 100101, e(011) = 011111, e(101) = 101001, e(110) = 110110, e(111) = 111010. How many errors will e(011) = 011111

- 7) Consider (3, 8) encoding function $e: B^3 \to B^8$ defined by e(000) = 00000000, e(001) = 10111000, e(010) = 00101101, e(100) = 10100100, e(011) = 10010101, e(101) = 10001001, e(110) = 00011100, e(111) = 00110001. How many errors will e(110) = 10001001.
- 8) Consider (3, 8) encoding function $e: B^3 \to B^8$ defined by e(000) = 00000000, e(001) = 10111000, e(010) = 00101101, e(100) = 10100100, e(011) = 10010101, e(101) = 10001001, e(110) = 00011100, e(111) = 00110001. Is e a group code? Why?
- 9) Consider (2, 6) encoding function $e: B^2 \to B^6$ defined by e(00) = 000000, e(01) = 011110, e(10) = 101010, e(11) = 111000. Find the minimum distance of e. Is e a group code? Why?
- 10)Consider (2, 6) encoding function $e: B^2 \to B^6$ defined by e(00) = 000000, e(01) = 011110, e(10) = 101010, e(11) = 111000. How many errors will e detect?
- 11)Let e be (3, 5) encoding function defined by e(000) = 00000, e(001) = 11110, e(010) = 01101, e(100) = 01010, e(011) = 10011, e(101) = 10100, e(110) = 00111, e(111) = 11001. Show that e is a group code.
- 12)Let e be (3, 5) encoding function defined by e(000) = 00000, e(001) = 11110, e(010) = 01101, e(100) = 01010, e(011) = 10011, e(101) = 10100, e(110) = 00111, e(111) = 11001. How many errors will e detect?
- 13) Let $H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be a parity check matrix. Determine the group

code $e_H: B^2 \to B^5$.

14)Let
$$H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 be a parity check matrix. Determine the group code

 $e_H: B^3 \rightarrow B^6$.

15)Let
$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 be a parity check matrix. Determine the group code

 $e_H: B^3 \rightarrow B^6$.

- 16)Consider (3, 8) encoding function $e: B^3 \to B^8$ defined by e(000) = 00000000, e(001) = 10111000, e(010) = 00101101, e(100) = 10100100, e(011) = 10010101, e(101) = 10001001, e(110) = 00011100, e(111) = 00110001. Let d be an (8, 3) maximum likelihood decoding function associate with e. How many errors can (e,d) detect?
- 17)Consider (3, 5) encoding function $e: B^3 \to B^5$ defined by by e(000) = 00000, e(001) = 11110, e(010) = 01101, e(100) = 01010, e(011) = 10011, e(101) = 10100, e(110) = 00111, e(111) = 11001. Let d be an (5, 3) maximum likelihood decoding function associate with e. How many errors can (e,d) detect?
- 18)Let e be the (3, 8) encoding function with minimum distance 4. Let d be the associated maximum likelihood decoding function. Determine the number of errors that (e,d) can correct.

$$19) Find i) \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad ii) \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

- 20) Explain the procedure for obtaining a maximum likelihood decoding function associated with a group code $e: B^m \to B^n$.
- 21) Explain the decoding procedure for a group code given by a parity check matrix.

22)Let
$$H = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 be a parity check matrix. Decode 011001 relative

to a maximum likelihood decoding function associate with e_H.

23)Let H =
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 be a parity check matrix. Decode 101011 relative

to a maximum likelihood decoding function associate with e_H.

Unit – III

1 : Questions of 2 marks

- 1) Let (R, +) be a group of real numbers under addition. Show that $f: R \to R$, defined by f(x) = 3x, for all $x \in R$, is a group homomorphism. Find Ker(f).
- 2) Let (R, +) be a group of real numbers under addition. Show that $f: R \to R$, defined by f(x) = 2x, for all $x \in R$, is a group homomorphism. Find Ker(f).

- 3) If (R, +) is a group of real numbers under addition and (R^+, \cdot) is a group of positive real numbers under multiplication. Show that $f: R \to R^+$, defined by $f(x) = e^x$, for all $x \in R$, is a group homomorphism. Find Ker(f).
- 4) Let (R^*, \cdot) be a group of non zero real numbers under multiplication. Show that $f: R^* \to R^*$, defined by $f(x) = x^3$, for all $x \in R^*$, is a group homomorphism. Find Ker(f).
- 5) Let (C^*, \cdot) be a group of non zero complex numbers under multiplication. Show that $f: C^* \to C^*$, defined by $f(z) = z^4$, for all $z \in C^*$, is a group homomorphism. Find Ker(f).
- 6) Let (Z, +) be a group of integers under addition and $G = \{5^n : n \in Z\}$ a group under multiplication. Show that $f: Z \to G$, defined by $f(n) = 5^n$, for all $n \in Z$, is onto group homomorphism.
- 7) Let (Z, +) and (E, +) be the groups of integers and even integers respectively under addition. Show that $f: Z \to E$, defined by f(n) = 2n, for all $n \in Z$, is an isomorphism.
- 8) Define a group homomorphism. Let (G, *), (G', *') be groups with identity elements e, e' respectively. Show that $f: G \to G'$, defined by f(x) = e', for all $x \in G$, is a group homomorphism.
- 9) Let $G = \{a, a^2, a^3, a^4, a^5 = e\}$ be the cyclic group generated by a. Show that $f: (Z_5, +_5) \to G$, defined by $f(\overline{n}) = a^n$, for all $\overline{n} \in Z_5$, is a group homomorphism. Find Ker(f).
- 10) Let $f: (R, +) \to (R, +)$ be defined by f(x) = x + 1, for all $x \in R$. Is f a group homomorphism? Why?
- 11) Let $G = \{1, -1, i, -i\}$ be a group under multiplication and $Z_8' = \{\bar{1}, \bar{3}, \bar{5}, \bar{5}, \bar{7}\}$ a group under multiplication modulo 8. Show that G and Z_8' are not isomorphic.
- 12) Show that the group $(Z_4, +_4)$ is isomorphic to the group (Z_5', \times_5) .

- 13) Let $f: G \to G'$ be a group homomorphism. If $a \in G$ and o(a) is finite then show that $o(f(a)) \mid o(a)$.
- 14) Let $f: G \to G'$ be a group homomorphism If H' is a subgroup of G' then show that $Ker(f) \subseteq f^{-1}(H')$.
- 15) Let $f: G \to G'$ be a group homomorphism and o(a) is finite, for all $a \in G$. If f is one one then show that o(f(a)) = o(a).
- 16) Let $f: G \to G'$ be a group homomorphism and o(f(a)) = o(a), for all $a \in G$. Show that f is one one.

2: Multiple choice Questions of 1 marks

Choose the correct option from the given options.

1) Every finite cyclic group of order n is isomorphic to --- a) (Z, +) b) $(Z_n, +_n)$ c) (Z_n, \times_n) d) $(Z_n^{'}, \times_n)$

2) Every infinite cyclic group is isomorphic to ---

a) (Z, +) b) $(Z_n, +_n)$ c) (Z_n, \times_n) d) (Z_n', \times_n)

3) Let $f: G \to G'$ be a group homomorphism and $a \in G$. If o(a) is finite then - - -

a) $o(f(a)) = \infty$ b) $o(f(a)) \mid o(a)$.

c) o(a) | o(f(a)) d) o(f(a)) = 0.

4) A group $G = \{1, -1, i, -i\}$ under multiplication is not isomorphic to -

a) $(Z_4, +_4)$ b) G

c) (Z'_8, \times_8) d) none of these.

5) Let $f: G \to G'$ be a group homomorphism. If G is abelian then f(G) is

a) non abelian b) abelian

c) cyclic d) empty set

- 6) Let $f: G \to G'$ be a group homomorphism. If G is cyclic then f(G) is
 - a) non abelian
- b) non cyclic

c) cyclic

- d) finite set
- 7) A onto group homomorphism $f: G \to G'$ is an isomorphism if Ker(f) =
 - a) **b**

- b) {e) c) {e'} d) none of these
- 8) A function $f: G \to G$, (G is a group), defined by f(x) = x-1, for all x \in G, is an automorphism if and only if G is - -
 - a) abelian
- b) cyclic
- c) non abelian
- d) $G = \phi$.

3 : Questions of 4 marks

- 1) Let $f: G \to G'$ be a group homomorphism . prove that f(G) is a subgroup of G'. Also prove that if G is abelian then f(G) is abelian.
- 2) Let $f: G \to G^{'}$ be a group homomorphism. Show that f is one one if and only if $Ker(f) = \{e\}$.
- 3) Let $G = \{1, -1, i, -i\}$ be a group under multiplication. Show that f: (Z, i) $+) \rightarrow G$, defined by $f(n) = i^n$, for all $n \in Z$, is onto group homomorphism. Find Ker(f).
- 4) Let $G = \{1, -1, i, -i\}$ be a group under multiplication. Show that f: (Z, i)+) \rightarrow G, defined by $f(n) = (-i)^n$, for all $n \in \mathbb{Z}$, is onto group homomorphism. Find Ker(f).
- 5) Let $G = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R}, a^2 + b^2 \neq 0 \right\}$ be a group under multiplication and C* be a group of non zero complex numbers under

multiplication. Show that $f: C^* \to G$ defined by $f(a + ib) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, for all $a + ib \in C^*$, is an isomorphism.

- 6) Define a group homomorphism. Prove that homomorphic image of a cyclic group is cyclic.
- 7) Let $f: G \to G'$ be a group homomorphism. Prove that
 - i) f(e) is the identity element of G', where e is the identity element of G
 - ii) $f(a^{-1}) = (f(a))^{-1}$, for all $a \in G$
 - iii) $f(a^m) = (f(a))^m$, for all $a \in G$, $m \in Z$.
- 8) Let $(C^*, \cdot) \cdot (R^*, \cdot)$ be groups of non zero complex numbers, non zero real numbers respectively under multiplication. Show that $f: C^* \to R^*$ defined by f(z) = |z|, for all $z \in C^*$, is a group homomorphism. Find Ker(f). Is f onto? Why?
- 9) Let (C^*,\cdot) , (R^*,\cdot) be groups of non zero complex numbers, non zero real numbers respectively under multiplication. Show that $f:C^*\to R^*$ defined by $f(z)=|\bar{z}|$, for all $z\in C^*$, is a group homomorphism. Find Ker(f). Is f onto? Why?
- 10)Let $G = \{1, -1\}$ be a group under multiplication. Show that $f: (Z, +) \rightarrow G$ defined by $f(n) = \begin{cases} 1 & \text{, if n is even} \\ -1 & \text{, if n is odd} \end{cases}$

is onto group homomorphism. Find Ker(f).

- 11)Let (R^+, \cdot) be a group of positive reals under multiplication. Show that $f: (R, +) \to R^+$ defined by $f(x) = 2^x$, for all $x \in R$, is an isomorphism.
- 12) Let (R^+, \cdot) be a group of positive reals under multiplication. Show that $f: (R, +) \to R^+$ defined by $f(x) = e^x$, for all $x \in R$, is an isomorphism.
- 13) If $f: G \to G'$ is an isomorphism and $a \in G$ then show that o(a) = o(f(a)).
- 14) Prove that every finite cyclic group of order n is isomorphic to $(Z_n\,,\,+_n)$.

- 15) Prove that every infinite cyclic group is isomorphic to (Z, +).
- 16)Let G be a group of all non singular matrices of order 2 over the set of reals and R^* be a group of all nonzero reals under multiplication. Show that $f: G \to R^*$, defined by f(A) = |A|, for all $A \in G$, is onto group homomorphism. Is f one one? Why?
- 17) Let G be a group of all non singular matrices of order n over the set of reals and R^* be a group of all nonzero reals under multiplication. Show that $f: G \to R^*$, defined by f(A) = |A|, for all $A \in G$, is onto group homomorphism.
- 18) Let R^* be a group of all nonzero reals under multiplication. Show that $f: R^* \to R^*$, defined by f(x) = |x|, for all $x \in R^*$, is a group homomorphism. Is f onto? Justify.
- 19) Prove that every group is isomorphic to it self. If G_1 , G_2 are groups such that $G_1 \cong G_2$ then prove that $G_2 \cong G_1$.
- 20) Let G_1 , G_2 , G_3 be groups such that $G_1\cong G_2$ and $G_2\cong G_3.$ Prove that $G_1\cong G_3.$
- 21) Show that $f: (C, +) \rightarrow (C, +)$ defined by f(a + ib) = -a + ib, for all $a + ib \in C$, is an automorphism.
- 22) Show that $f:(C,+)\to(C,+)$ defined by f(a+ib)=a-ib, for all $a+ib\in C$, is an automorphism.
- 23) Show that $f:(Z,+)\to (Z,+)$ defined by f(x)=-x, for all $x\in Z$, is an automorphism.
- 24) Let G be an abelian group. Show that $f: G \to G$ defined by $f(x) = x^{-1}$, for all $x \in G$, is an automorphism.
- 25)Let G be a group and $a \in G$. Show that $f_a : G \to G$ defined by $f_a(x) = axa^{-1}$, for all $x \in G$, is an automorphism.
- 26)Let G be a group and $a \in G$. Show that $f_a : G \to G$ defined by $f_a(x) = a^{-1}xa$, for all $x \in G$, is an automorphism.

- 27) Let $G = \{a, a^2, a^3, ---, a^{12} (= e)\}$ be a cyclic group generated by a. Show that $f: G \to G$ defined by $f(x) = x^4$, for all $x \in G$, is a group homomorphism. Find Ker(f).
- 28)Let $G = \{a, a^2, a^3, ---, a^{12} (= e)\}$ be a cyclic group generated by a. Show that $f: G \to G$ defined by $f(x) = x^3$, for all $x \in G$, is a group homomorphism. Find Ker(f).
- 29) Show that $f: (C, +) \rightarrow (R, +)$ defined by f(a + ib) = a, for all $a + ib \in C$, is onto homomorphism. Find Ker(f).
- 30) Show that homomorphic image of a finite group is finite. Is the converse true? Justify.

Unit – IV

1 : Questions of 2 marks

- 1) In a ring (Z, \oplus, \odot) , where $a \oplus b = a + b 1$ and $a \odot b = a + b ab$, for all $a, b \in Z$, find zero element and identity element.
- 2) Define an unit. Find all units in $(Z_6, +_6, \times_6)$.
- 3) Define a zero divisor. Find all zero divisors in $(Z_8, +_8, \times_8)$.
- 4) Let R be a ring with identity 1 and $a \in R$. Show that

i)
$$(-1)a = -a$$
 ii) $(-1)(-1) = 1$

- 5) Let R be a commutative ring and a , $b \in R$. Show that $(a b)^2 = a^2 2ab + b^2$.
- 6) Let $(Z[\sqrt{-5}], +, \cdot)$ be a ring under usual addition and multiplication of elements of $Z[\sqrt{-5}]$. Show that $Z[\sqrt{-5}]$ is a commutative ring. Is $2 + 3\sqrt{-5}$ a unit in $Z[\sqrt{-5}]$?
- 7) Let $\overline{m} \in (Z_n, +_n, \times_n)$ be a zero divisor. Show that m is not relatively prime to n, where n > 1.

- 8) If $\overline{m} \in (Z_n, +_n, \times_n)$ is invertible then show that m and n are relatively prime to n, where n > 1.
- 9) Let n > 1 and 0 < m < n. If m is relatively prime to n then show that $\overline{m} \in (Z_n, +_n, \times_n)$ is invertible.
- 10) Let n > 1 and 0 < m < n. If m is not relatively prime to n then show that $\overline{m} \in (Z_n, +_n, \times_n)$ is a zero divisor.
- 11) Show that a field has no zero divisors.
- 12)Let R be a ring in which $a^2 = a$, for all $a \in R$. Show that a + a = 0, for all $a \in R$.
- 13)Let R be a ring in which $a^2 = a$, for all $a \in R$. If a, $b \in R$ and a + b = 0, then show that a = b.
- 14)Let R be a commutative ring with identity 1. If a, b are units in R then show that a⁻¹ and ab are units in R.
- 15) In $(Z_{12}, +_{12}, \times_{12})$ find (i) $(\bar{3})^2 +_{12} (\bar{5})^{-2}$ (ii) $(\bar{7})^{-1} +_{12} \bar{8}$.
- 16) In $(Z_{12}, +_{12}, \times_{12})$ find (i) $(\overline{5})^{-1} \overline{7}$ (ii) $(\overline{11})^{-2} +_{12} \overline{5}$.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

- 1) $R = \{\pm 1, \pm 2, \pm 3, ---\}$ is not a ring under usual addition and multiplication of integers because --
 - a) R is not closed under multiplication
 - b) R is not closed under addition
 - c) R does not satisfy associativity w.r.t. addition
 - d) R does not satisfy associativity w.r.tmultiplication
- 2) Number of zero divisors in $(Z_6, +_6, \times_6) = ---$

	a) 0	b) 1	c) 2	d) 3
3) $(Z_{43}, +_{43}, \times_{43})$ is				

- a) both field and integral domain
- b) an integral domain but not a field
- c) a field but not an integral domain
- d) neither a field nor an integral domain
- 4) In $(Z_9, +_9, \times_9)$, $\overline{6}$ is --
 - a) a zero divisor b) an invertible element
 - c) a zero element d) an identity element
- 5) Every Boolean ring is -
 - a) an integral domain b) a field
 - c) a commutative ring d) a division ring
- 6) If a is a unit in a ring R then a is -
 - a) a zero divisor b) an identity element
 - c) a zero element d) an invertible element
- 7) If R is a Boolean ring and $a \in R$ then - -

a)
$$a + a = a$$
 b) $a^2 = 0$ c) $a^2 = 1$ d) $a + a = 0$

- 8) Value of $(7)^2 7$ in $(Z_8, +_8, \times_8)$ is --
 - a) $\overline{6}$ b) $\overline{4}$ c) $\overline{2}$ d) $\overline{0}$

3 : Questions of 6 marks

- 1a) Define i) a ring ii) an integral domain iii) a division ring.
 - b) Show that the set $R = \{0, 2, 4, 6\}$ is a commutative ring under addition and multiplication modulo 8.
- 2a) Define i) a commutative ring ii) a field iii) a skew field.
 - b) In 2Z, the set of even integers, we define a + b = usual addition of a and b and $a \odot b = \frac{ab}{2}$. Show that $(2Z, +, \odot)$ is a ring.

- 3 a) Define i) a ring with identity element ii) an unit element iii) a Boolean ring.
 - b) Let (2Z, +) be an abelian group of even integers under usual addition. Show that $(2Z, +, \odot)$ is a commutative ring with identity 2, where $a \odot b = \frac{ab}{2}$, for all $a, b \in 2Z$.
- 4) a) Define i) a zero divisor ii) an invertible element iii) a field.
 - b) Let (3Z, +) be an abelian group under usual addition where $3Z = \{3n \mid n \in Z\}$. Show that $(3Z, +, \odot)$ is a commutative ring with identity 3, where $a \odot b = \frac{ab}{3}$, for all $a, b \in 3Z$.
- 5) a) Let $(R, +, \cdot)$ be a ring and a, b, $c \in R$. Prove that i) $a \cdot 0 = 0$ ii) (a - b)c = ac - bc.
 - b) Show that (Z, \oplus, \odot) is a ring, where $a \oplus b = a + b 1$ and a $\odot b = a + b ab$, for all $a, b \in Z$.
- 6) a) Let $(R, +, \cdot)$ be a ring and a, b, $c \in R$. Prove that i) $a \cdot (-b) = -(ab)$ ii) $a \cdot (b - c)c = ab - ac$.
 - b) Show that the abelian group $(Z[\sqrt{-5}], +)$ is a ring under multiplication $(a + b\sqrt{-5})(c + d\sqrt{-5}) = ac 5bd + (ad + bc)\sqrt{-5}.$
- 7) a) Define i) a division ring ii) an unit element iii) an integral domain b) Show that the abelian group (Z[i], +) is a ring under
 - b) Show that the abelian group (Z[1], +) is a ring under multiplication
 - (a + bi)(c + di) = ac bd + (ad + bc) i, for all a + bi, $c + di \in Z[i]$.
- 8a) Let R be a ring with identity 1 and $(ab)^2 = a^2b^2$, for all a, $b \in R$. Show that R is commutative.
 - b)Show that the abelian group $(Z_n, +_n)$ is a commutative ring with identity $\bar{1}$ under multiplication modulo n operation.

- 9 a) Show that a ring R is commutative if and only if $(a + b)^2 = a^2 + 2ab + ab^2 = a^2 + 2ab^2 = a^2 + 2a^2 + 2a^2 = a^2 + 2a^2 + 2a^2 = a^2 + 2a^2 + 2a^2 + 2a^2 = a^2 + 2a^2 + 2a^$ b^2 , for all $a, b \in R$.
 - b) Show that $Z[i] = \{a + ib \mid a \text{ , } b \in Z\}$, the ring of Gaussian integers, is an integral domain.
- 10 a) Show that a commutative ring R is an integral domain if and only if $a, b, c \in R, a \neq 0, ab = ac \Rightarrow b = c.$
 - b) Prepare addition modulo 4 and multiplication modulo 4 tables. Find all invertible elements in \mathbb{Z}_4 .
- 11 a) Show that a commutative ring R is an integral domain if and only if $a, b \in R, ab = 0 \Rightarrow \text{ either } a = 0 \text{ or } b = 0.$
 - b) Prepare addition modulo 5 and multiplication modulo 5 tables. Find all invertible elements in \mathbb{Z}_5 .
- 12 a) Let R be a commutative ring. Show that the cancellation law with respect to multiplication holds in R if and only if a, $b \in R$, ab = 0 \Rightarrow either a = 0 or b = 0.
 - b) Prepare a multiplication modulo 6 table for a ring $(Z_6, +_6, \times_6)$. Hence find all zero divisors and invertible elements in Z_6 .
- 13 a) For n > 1, show that Z_n is an integral if and only if n is prime.
 - b) Let $R = \left\{ \begin{bmatrix} z & w \\ -w & z \end{bmatrix} : z, w \in C \right\}$ be a ring under addition and multiplication, where $C = \{a + ib \mid a, b \in R\}$. Show that R is a divison ring.
- 14 a) Prove that every field is an integral domain. Is the converse true? Justify.
 - b) Which of the following rings are fields? Why?
- i) $(Z_5, +, \times)$ ii) $(Z_5, +_5, \times_5)$ iii) $(Z_{25}, +_{25}, \times_{25})$.
- 15) a) Prove that every finite integral domain is a field.
 - b) Which of the following rings are integral domains? Why?

i) $(2Z, +, \times)$ ii) $(Z_{50}, +_{50}, \times_{50})$ iii) $(Z_{17}, +_{17}, \times_{17})$.

16 a) Prove that a Boolean ring is a commutative ring.

- b) Give an example of a division ring which is not a field.
- 17 a) for n > 1, show that Z_n is a field if and onle if n is prime.
 - b) Let $R = \{a + bi + cj + dk \mid a, b, c, d \in R\}$, where $i^2 = j^2 = k^2 = -1$, ij = k = -ji , jk = i = -kj , ki = j = -ik. Show that every nonzero element of R is invertible.
- 18 a) If R is a ring and a, $b \in R$ then prove or disprove $(a + b)^2 = a^2 + a^2 +$ $2ab + b^2$.
 - b) Show that R⁺, the set of all positive reals forms a ring under the following binary operations:

 $a \oplus b = ab \text{ and } a \odot b = a \frac{\log_5 b}{5}, \text{ for all } a, b \in R^+.$

- 19 a) Define i) a ring ii) a Boolean ring iii) an invertible element.
 - b) Let p be a prime and (pZ, +) be an abelian group under usual addition, show that $(pZ, +, \odot)$ is a commutative ring with identity element p where a \odot b = $\frac{ab}{p}$, for all a, b \in pZ.
- 20) a) Define i) a ring with identity element ii) a commutative ring iii) a zero divisor.
 - b) Show that R⁺, the set of all positive reals forms a ring under the following binary operations:

 $a \oplus b = ab \text{ and } a \odot b = a \frac{\log_7 b}{n}, \text{ for all } a,b \in R^+.$